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M
ore than 1000 manufacturer-
identified, nanotechnology-
based consumer products are

currently available on the market (The Woo-
drow Wilson International Center for Schol-
ars, 2010). A growing fraction of them repre-
sent green products intended to achieve
efficient and less polluting energy sources.1

However, some manufactured nanoparti-
cles (MNPs) intended for industrial applica-
tions may cause toxic effects in humans,2�4

and public concern about the safety of
MNPs is increasing.5 Induced biological ef-
fects could result from exposure and subse-
quent absorption of ultrafine MNPs via dif-
ferent routes6 and lead to their potentially
detrimental delivery to critical organs.7

Once MNPs gain entry into the systemic cir-
culation, they can immediately interact
with blood cells and can then be either dis-
tributed throughout the body or quickly
captured by macrophages of the reticuloen-
dothelial system. Thus, understanding the
biological effects of exposure to MNPs is of
paramount importance.

Experimental nanotoxicology is a very
young field.8�14 There remain significant sci-
entific gaps in our understanding of the
toxicology of nanobased materials that, (i)
are already contained in commercial prod-
ucts not intended for human exposure, (ii)
could contaminate the environment while
also not intended for human exposure, and
(iii) are intended for biomedical applica-
tions such as drug delivery, imaging, and
sensing. Thus, it is imperative to develop a
comprehensive, and ideally, predictive
knowledge of the effects of MNPs on the
environment as well as animals and hu-
mans. Recently, Mumper and colleagues
published a comprehensive study on the
hemocompatibility of lipid NPs for drug de-
livery.15 There are several reports on the del-

eterious effects of MNPs on humans and
wildlife. For example, Radomski et al.16 re-
ported that both multiwalled and single-
walled carbon nanotubes caused platelet
aggregation and vascular thrombosis accel-
eration. Harhaji et al.17 showed that even at
the “high dose” of 1 �g/mL, the C60
fullerenes caused reactive-oxygen, species-
mediated, necrotic cell damage18 and pro-
posed C60 fullerenes as an anticancer
agent. Kane et al.19 found that silica MNPs
directly interacted with plasma and lysoso-
mal membranes leading to Ca2� influx, ATP
depletion, and cell death. Kang et al.20 ob-
served that nano-TiO2 caused ROS stress
and DNA damage in lymphocytes. Leonard
et al.21 showed that PbCrO4 particles re-
sulted in ROS generation and up-regulation
of NF-kappaB and AP-1 in RAW 264.7 cells.
Pulskamp et al.22 reported that several
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ABSTRACT Evaluation of biological effects, both desired and undesired, caused by manufactured nanoparticles

(MNPs) is of critical importance for nanotechnology. Experimental studies, especially toxicological, are time-

consuming, costly, and often impractical, calling for the development of efficient computational approaches

capable of predicting biological effects of MNPs. To this end, we have investigated the potential of

cheminformatics methods such as quantitative structure�activity relationship (QSAR) modeling to establish

statistically significant relationships between measured biological activity profiles of MNPs and their physical,

chemical, and geometrical properties, either measured experimentally or computed from the structure of MNPs.

To reflect the context of the study, we termed our approach quantitative nanostructure�activity relationship

(QNAR) modeling. We have employed two representative sets of MNPs studied recently using in vitro cell-based

assays: (i) 51 various MNPs with diverse metal cores (Proc. Natl. Acad. Sci. 2008, 105, 7387�7392) and (ii) 109 MNPs

with similar core but diverse surface modifiers (Nat. Biotechnol. 2005, 23, 1418�1423). We have generated

QNAR models using machine learning approaches such as support vector machine (SVM)-based classification and

k nearest neighbors (kNN)-based regression; their external prediction power was shown to be as high as 73% for

classification modeling and having an R2 of 0.72 for regression modeling. Our results suggest that QNAR models can

be employed for: (i) predicting biological activity profiles of novel nanomaterials, and (ii) prioritizing the design

and manufacturing of nanomaterials toward better and safer products.
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carbon MNPs (multiwalled, single-walled, carbon black,
quartz) increased ROS and decreased mitochondrial
membrane potential in a dose- and time-dependent
manner in rat macrophages and human A549 lung cells.
An important review on the subject of nanotoxicity
was recently published7 that describes examples of
known toxic effects of MNPs.

Modeling MNPs and their biological effects is chal-
lenging. First, because of the high structural complex-
ity and diversity of MNPs, it is difficult to develop quan-
titative parameters capable of characterizing the
structural and chemical properties of MNPs. Second,
systematic physicochemical, geometrical, structural,
and biological studies of MNPs are nearly absent in the
public domain, making the development of statistically
significant computational models and their validation
difficult as these procedures require relatively large
amounts of data. For instance, most papers cited in
the previous paragraph reported experimental studies
on one or a few MNPs. Not surprisingly, the reports on
computational modeling of MNPs, especially in the area
of nanotoxicology have been scarce.23 Liu et al.24 dem-
onstrated the utility of molecular dynamics simulations
for (i) revealing the overall changes in the structure of
cellular membranes caused by the insertion of carbon
nanotubes as well as (ii) estimating the affinity of drug-
like molecules for carbon nanotubes in an aqueous en-
vironment.25 In another recent study by Shaw et al.,26 as
many as 51 MNPs were thoroughly tested in vitro
against four cell lines in different assays to study their
induced biological effects. Different statistical tech-
niques were applied to find the correlations between
the biological activity profiles of MNPs and to discover
hidden structure�property relationships. Recently,
Puzyn et al.27 suggested that quantitative

structure�activity relationship (QSAR) modeling can
be employed in computational nanotoxicology stud-
ies. The authors appropriately concluded that no uni-
versal “nano-QSAR” model can accurately assess the
toxicity of all possible MNPs. They also reported sev-
eral QSAR models largely developed for carbon nano-
tubes and fullerenes to assess their solubility and lipo-
philicity. However, these models were built using very
small data sets, usually less than 20 MNPs, and insuffi-
cient validation procedures according to common
QSAR modeling practices (such as OECD principles28).

The main objective of this study is to develop predic-
tive quantitative nanostructure�activity relationship
(QNAR) models following the established principles of
conventional QSAR modeling workflows.29 Similar to
general QSAR modeling strategies, the overall objec-
tive of QNAR models is to relate a set of descriptors
characterizing MNPs with their measured biological ef-
fects, for example, cell viability, or cellular uptake (Fig-
ure 1). Such models can then be applied to newly de-
signed or commercially available MNPs in order to
quickly and efficiently assess their potential biological
effects. As a proof-of-concept, we describe case stud-
ies for two relatively large series of MNPs that have
been tested for their effects in different in vitro cellular-
based assays. The first series26 comprises 51 diverse
MNPs with different metal cores and surface modifica-
tions (Case Study 1) that were tested in different cell-
based assays, whereas the second series30 includes 109
NPs with the same core but different surface modifiers
(Case Study 2) that were tested for their cell uptake ac-
tivity. We have applied conventional cheminformatics
techniques such as (i) cluster analysis to examine if
MNPs with similar biological activities are also structur-
ally similar, and (ii) QNAR modeling to establish quanti-

Figure 1. Study design for quantitative nanostructure�activity relationship (QNAR) modeling using both calculated as well
as experimentally measured properties of manufactured nanoparticles as descriptors.
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tative links between available MNP descriptors (that
characterize their structure) and their biological activ-
ity. In Case Study 1, the structure of MNPs was charac-
terized by their experimental properties treated as mo-
lecular descriptors. Conversely, Case Study 2 could be
regarded as a conventional QSAR investigation since
109 MNPs with the same metal core (analogous to com-
mon chemical scaffold for organic molecules) were
characterized by conventional chemical descriptors of
surface-modifying organic molecules. In both case stud-
ies, QNAR calculations led to statistically validated and
externally predictive models; these models quantita-
tively relate the chemical, physical, and geometrical
properties of MNPs with their biological effects meas-
ured in vitro in different cell-based assays. We believe
that this report, which to the best of our knowledge is
the first example of QNAR analysis of relatively large
data sets of MNPs, successfully demonstrates the high
potential of cheminformatics approaches for improving
the experimental design and prioritizing the biological
testing of novel MNPs.

RESULTS
Case Study 1OModeling of Cellular Effects Induced by Diverse

MNPs. Using the Heat Map Viewer (HMV) software devel-
oped internally, we first visualized the biological activ-
ity profile of the entire data set comprising 51 MNPs
tested in vitro using four doses, four different cell lines,
and four different assays of cellular physiology, forming
an activity matrix of 64 biological parameters for each
MNP (using data reported by Shaw et al.26); this array
represents a 64-feature biological activity profile for
each MNP (Supporting Information, Figure S1), which
we subsequently normalized to the unit (variation be-
tween 0 and 1) and clustered using ISIDA/Cluster31 (hi-
erarchical algorithm, Euclidean distance between com-
pounds, complete linkage between clusters). It should
be pointed out that no obvious clusters of MNPs ap-
peared on this initial heat map.

We identified three clusters (Figure 2) using this hi-
erarchical clustering procedure. Five types of MNPs
were represented in the data set; each MNP had a metal
core, that is, Fe2O3-predominant, Fe3O4-predominant,
Cd�Se, or FeIII; an organic coat, either acidic, basic, am-

phiphilic, or lipophilic; and various surface modifiers

for some of the MNPs. First, we confirmed some of the

results of Shaw et al.26 that all MION nanoparticles were

found in cluster 2, whereas all three quantum dot-

based MNPs were found in cluster 1. Importantly, fur-

ther analysis (see Table 1) revealed that all MNPs in-

cluded in cluster 2 featured the same metal core (Fe3O4-

predominant) independently of their surface modifiers

and the type of MNPs; for instance, cluster 2 contains 13

CLIO, 2 PNP, and 4 MION each with different coatings,

such as cross-linked dextran, arabino-galactan, or car-

boxymethyl dextran, and different additional organic

surface modifiers (see Supporting Information, Table 1

for the complete description of MNPs). All of these

MNPs displayed relatively similar biological activity pro-

files (Figure 2), and data visualization with the HMV pro-

gram confirmed that MNPs within cluster 2 were very

similar in terms of their biological properties, whereas

those in clusters 1 and 3 were more chemically diverse.

These similarity discrepancies were also observed in

the distance matrix, where intracluster pairwise similari-

ties were significantly higher for cluster 2 compared to

the other two clusters. These results demonstrate that,

at least in some cases, MNPs with similar biological ac-

tivity can be also recognized as similar by their struc-

tural descriptors (e.g., type of metal core). This initial ob-

Figure 2. Hierarchical clustering analysis of 51 MNPs using their biological activity profiles. The clustered distance matrix
reveals three distinct clusters of MNPs based on their biological activity profiles (on the distance matrix, blue colors � high
similarity between nanoparticles, red/green/yellow colors � low/medium similarity between nanoparticles).

TABLE 1. Case Study 1. Cluster Membership According to
the MNP Types and Their Metal Core Types

cluster 1 cluster 2 cluster 3 total

MNP Type

CLIO 7 13 3 23
PNP 7 2 10 19
MION 0 4 0 4
Qt-dot 3 0 0 3
Feridex 0 1 0 1
Ferrum Haussmann 1 0 0 1

18 20 13 51

MNP Metal Core

Fe2O3 5 0 9 14
Fe3O4 9 20 4 33
Cd�Se 3 0 0 3
Fe(III) 1 0 0 1

18 20 13 51
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servation is important to demonstrate the applicability
of cheminformatics approaches to the analysis of
nanostructure�activity relationships.

To further demonstrate the overall feasibility of
QNAR modeling, we used experimentally measured
physical parameters (descriptors) of MNPs to build bi-
nary classification models (i.e., models capable of as-
signing MNPs to one of two distinct classes defined by
their biological activity). Four such structural descriptors
were available for 44 of the 51 MNPs: nanoparticle
size, ranging from 20 to 74 nm, R1 and R2 relaxivities
representing their magnetic properties, and zeta poten-
tial representing the intensity of charge on their sur-
face. On the other hand, the entire biological activity
profile included 64 features, that is, a total number of
all possible combinations of four doses, four cell lines,
and four assays. To enable a binary classification study,
we transformed the 64 features into 1 by calculating
their arithmetic mean (Zmean; cf. Table S1 in Supporting
Information). It should be noted that when Shaw et al.26

expressed the biological activity of MNPs as a 64-feature
vector (4 cell lines � 4 assays � 4 doses), the correla-
tion coefficient between vectors associated with the in-
dependent replicates for the same nanoparticle was as
high 0.93; furthermore, these independent replicates
for the same nanoparticle were more similar to each
other, than to any other nanoparticle (cf. Figure 3 in
Shaw et al.26). We then defined two binary classes us-
ing an arbitrary threshold at Zmean � �0.40, which al-
lowed us to split the set into two groups each contain-
ing the same number of MNPs. As a result, 22 MNPs
belonged to class 1 (Zmean � �0.40), and the remain-
ing 22 were put in class 0 (Zmean � �0.40).

To derive QNAR models, we used the WinSVM pro-
gram developed in-house. WinSVM implements an ex-
ternal 5-fold cross-validation procedure: the program
splits the entire data set five times into a modeling set
including 80% of the nanoparticle data set, and the ex-
ternal validation set, comprising the remaining 20% of
the nanoparticle data set. Only the modeling set (which
is divided additionally into multiple training and test
sets) was used to build and validate models, and mod-
els with appreciable training and test set prediction ac-
curacies were selected for predicting class member-
ship of the external set. Each MNP was included into a
validation set only once, allowing us to calculate the

overall external prediction accuracy for the whole set
(see Table 2). The data indicate that SVM models had
relatively high external prediction accuracies of
56�88% for the five independent external validation
sets, with the mean external accuracy as high as 73%.
To assess model significance, we also applied a
Y-randomization procedure and found no statistically
significant model according to CCR acceptance thresh-
olds (see Materials and Methods); this result indicates
that models developed with the original data are statis-
tically robust.

In terms of applicability domain, the high similarity
of biological profiles for particles of cluster 2 could be
expected to yield better prediction performances
within this cluster. To evaluate this hypothesis, we recal-
culated all statistical parameters per cluster for 5-fold
external cross-validation results: cluster 1 (n � 13, CCR
� 0.65, sensitivity � 0.5, specificity � 0.8), cluster 2 (n �

18, CCR � 0.78, sensitivity � 0.78, specificity � 0.78),
and cluster 3 (n � 13, CCR � 0.7, sensitivity � 0.4, speci-
ficity � 1). These results confirm that prediction perfor-
mances of our model were indeed better for MNPs
comprised in cluster 2.

Then, we investigated the dose-dependency of bio-
logical effects induced by MNPs. The activity heat map
representing biological activity induced by MNPs at four
different concentrations is shown in Supporting Infor-
mation, Figure S2. We also plotted the Z score variations
for all 51 MNPs tested against aorta endothelial cells in
the ATP content assay at four different concentrations
(Figure 3). Overall, the higher was the dosage, the stron-
ger were the NP-induced effects; however, we ob-
served some interesting cases where this rule was not
clearly followed. Although the vast majority of MNPs are
characterized by small linear variations of Z scores cor-
responding to increases in their concentrations, some
MNPs induced significantly higher Z scores at higher
concentrations: NP_36 (PNP-Fe2O3�PVA, PEG), NP_29
(PNP-Fe3O4�PVA, protamine, rhodamine), NP_28 (PNP-
Fe3O4�PVA, ethylenediamine), NP_37 (PNP-
Fe2O3�PVA), and NP_20 (CLIO-SIA-FITC-Fe3O4-
succinimidyl iodoacetate). Of all these MNP with “out-
lier” dose dependencies, our binary classification model
assigns the class correctly for all but NP_20 (see Sup-
porting Information, Table S1); NP_20 features a unique
combination of molecular coating and surface modifi-

TABLE 2. Case Study 1OQNAR Modeling of the Biological Effects for 44 MNPs

modeling set external set

fold no. MNPs no. models % accuracy internal 5-fold CV % accuracy no. MNPs % accuracy % sensitivity % specificity

1 35 11 51.4�60.0 71.4�82.9 9 78 67 100
2 35 13 51.4�60.0 71.4�77.1 9 78 50 100
3 35 16 57.1�62.9 74.3�82.9 9 78 80 75
4 35 11 60.0�62.9 77.1�88.6 9 56 50 60
5 36 4 66.7 83.3�86.1 8 88 33 100

44 73 60 86A
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ers, and this nanoparticle displayed the highest varia-

tion in biological activity at a high concentration. Such

examples highlight the complexity involved in model-

ing these chemical systems where minor changes such

as a small variation of nanoparticle concentrations or

surface modifiers may dramatically affect their biologi-

cal activity profile. Although the modeling of such cases

remains very challenging, we believe that this proof-of-

concept study illustrates the ability of QNAR models to

establish predictive relationships between structural at-

tributes and biological activity of MNPs.

Case Study 2OModeling of MNPs Uptake in PaCa2 Cancer Cells.
Unlike the MNP set employed in Case Study 1, all MNPs

included in the second set possessed exactly the same

metal core. The structure of organic small molecule con-

jugated to the MNP surface was the only difference

from one MNP to another. As a result, each MNP was

represented by a unique set of descriptors determined

by the conjugated small molecule. There were 150 MOE

descriptors calculated for all 109 organic compounds.

We expressed cellular uptake as the decadic logarithm

of the concentration (pM) of MNP per cell, which varied

from 2.23 to 4.44 (see Supporting Information, Table

S2). Next, we performed a QSAR investigation and de-

scriptor analysis to uncover major structural attributes

responsible for cellular uptake of MNPs. An external

5-fold cross validation exercise was carried out in the

same manner as in Case Study 1 employing the k near-

est neighbors (kNN) modeling approach. Results

showed that prediction accuracies expressed as coeffi-

cients of correlation Rabs
2 ranged from 0.65 to 0.80 for

external sets (see Table 3). These results were slightly

improved to 0.67�0.90 by taking into account the ap-

plicability domain of the models and removing com-

pounds found to be outside the domain. We also per-

formed Y-randomization, and no statistically significant

models were retrieved, proving the robustness of QNAR

models built on this data set.

To enable model interpretation, we identified de-

scriptors that occurred most frequently in kNN models

with the highest prediction accuracy. We calculated av-

erage values of these descriptors for MNPs with the

highest (top 20) and the lowest (bottom 20) cellular up-

takes (Figure 4a) and found that these values were sig-

nificantly different in several cases. The top-10 most fre-

quently selected descriptors in each individual fold

and the averaged frequency across five folds are listed

in Supporting Information (SM_Tables S3 and S4). It is of

notice that several descriptors such as SlogP_VSA1,

SlogP_VSA2, and SlogP_VSA5 represent different as-

Figure 3. Analysis of Z score variations for all 51 nanoparticles tested against AO aorta endothelial cells in the ATP content
assay at four different concentrations (0.01, 0.03, 0.1, and 0.3 Fe (mg/mL) for iron-based nanoparticles (NP_1�48) respec-
tively; for the three quantum dot-based nanoparticles (NP_49�51), concentrations were equal to 1, 3, 30, and 100 nM). The
labeled MNPs show the most dramatic dose-dependence of their biological effects, particularly at high MNP concentrations.

TABLE 3. Case Study 2�QNAR Modeling of PaCa2 Cell Uptake for 109 MNPs with Different Surface Attachment

no applicability domain with applicability domain

fold modeling set external set no. models Rabs
2 MAE Rabs

2 MAE coverage (%)

1 87 22 371 0.65 0.18 0.67 0.18 86
2 87 22 282 0.67 0.14 0.73 0.13 91
3 87 22 266 0.72 0.22 0.75 0.21 82
4 87 22 183 0.75 0.19 0.90 0.14 64
5 88 21 145 0.80 0.16 0.78 0.17 76
cumulative external sets (109 MNPs) 0.72 0.18 0.77 0.17 80
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pects of van der Waals surface area’s contribution to
compound lipophilicity; another relatively frequent de-
scriptor is b_double (representing the number of
double bonds in a molecule).

Thus, lipophilicity was found to be the most discrimi-
nating factor; it is quantified by several descriptors such
as GCUT_SLOGP_0, SlogP_VSA0, BCUT_SLOGP_0, and
SlogP_VSA1. Consistent with this observation, MNPs
with the highest PaCa2 cellular uptake are highly en-
riched for lipophilic surface compounds (high values of
GCUT_SLOP_0); conversely, MNPs with the lowest
PaCa2 uptake are highly enriched for low values of
GCUT_SLOP_0 (Figure 4b). However, this phenomenon
was only found in Paca2 cell lines. In the other cell lines
tested by Weissleder et al.,30 cellular uptake measured
for the same series of MNPs revealed no significant
variations correlating with the structural properties of
MNPs. Other descriptors like molecular refractivity
(GCUT_SMR_0), specific van der Waals surface area (ba-
sic vsa_base, acidic vsa_acid, and donor vsa_don), and
electrostatic descriptors also reasonably discriminated
between MNPs possessing high or low Paca2 cellular
uptake. These findings imply that the cellular behavior
of a nanoparticle library based on a common core can
be predicted using QNAR analysis of the surface modi-
fying ligands, and thus that rational design of organic
compounds attached to the surface of MNPs is possible
using QNAR models and descriptor analysis.

DISCUSSION
Although QSAR methodology is well-known and is

extensively applied in the areas of drug discovery29

and chemical toxicity modeling,32 its application to
model the biological effects of MNPs presents a real
challenge for several reasons: (i) MNPs are complex as-
semblies of inorganic and/or organic elements, some-
times mixed or coated with diverse organic compounds
where the exact stoichiometry may vary from one MNP
to another, making classical molecular descriptors not

appropriate for this type of study; (ii) the exact compo-

sition of a given MNP is not known in most cases; (iii)

three-dimensional nanostructures that include thou-

sands of atoms are highly complex. Many computa-

tional approaches, like ab initio quantum chemistry

methods, are inadequate for such large, complex sys-

tems. Systematic physicochemical, geometrical, struc-

tural, and biological studies of MNPs are rare. Therefore,

computational modeling of MNPs is only beginning to

emerge. Most likely, a comprehensive computational

nanotechnology and nanotoxicology effort would re-

quire the integration of several computational tech-

niques, such as quantum mechanics, molecular dynam-

ics simulations,24,25,33 and cheminformatics.27,34 The

success will certainly depend on close collaboration

with experimental scientists, as well as the application

of high-throughput assay technologies to test MNPs, re-

sulting in a sufficiently large body of data to enable

large-scale modeling. Such strategies are entirely within

a vision for toxicity testing outlined in a recent Science

paper35 and implemented in a joint project between

EPA, NIEHS, and the NIH Chemical Genomics Center.

The overall goal of this study was to demonstrate

the potential benefits of using cheminformatics ap-

proaches such as QSAR (or QNAR) modeling to obtain

predictive knowledge for MNPs that affect human cells

and utilize this knowledge to improve the experimental

design of MNPs and enable their prioritization for in

vivo testing (e.g., to evaluate MNPs for therapeutic effi-

cacy or toxicity). There were three fundamental hypoth-

eses that drove this study: (i) the effects of MNPs on dif-

ferent types of human cells depend on the physical/

chemical/geometrical properties of MNPs; (ii) high-

throughput cellular-based assays can provide useful

and predictive information about pleiotropic biological

properties of MNPs; (iii) it is feasible to develop predic-

tive quantitative nanostructure�activity/toxicity

(QNAR/QNTR) models using physical/chemical charac-

Figure 4. Analysis of descriptors used most frequently in kNN-QSAR models of 109 MNPs. (a) Average descriptor values in MNPs with
highest and lowest PaCa2 cellular uptake. (b) Example of a lipophilicity related descriptor (GCUT_SLOGP_0), which significantly discrimi-
nates between nanoparticles with highest and lowest PaCa2 cellular uptake.
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terization and toxicological screens for an ensemble of
MNPs.

Obviously, in our study we have attempted to tackle
a very challenging problem of establishing predictive
relationships between the structure of MNPs and their
biological activity. It is undoubtedly true that biological
effects of nanomaterials are strongly dependent on a
large variety of factors. Should this consideration alone
prevent any attempt to model MNPs? It may appear so;
however, we should note that the problem of accurate
prediction of biological activity (let alone, toxicity) of or-
ganic molecules, that is, traditional objective of QSAR
modeling, is no less challenging when one thinks about
dozens if not hundreds of interlinked mediatory pro-
cesses in living cells (let alone whole organisms) that are
responsible for the observed biological response phe-
notypes. Nevertheless, the QSAR approach has been
successfully applied for many years to model very com-
plex biological end points. Thus, we have been moti-
vated to examine the applicability of QSAR approaches
to modeling nanoparticles empirically. We should also
emphasize that a critical strength of the data sets ana-
lyzed in our paper is that a large number of nanomate-
rials were simultaneously tested in the same labora-
tory under the identical culture conditions, thus
enabling direct comparisons across nanomaterials.

Our computational approach addresses a significant
near- and long-term problem that relates to the com-
plexity, time, and cost associated with performing sub-
chronic and chronic studies of novel nanomaterials in
animals.36 Because these types of comprehensive stud-
ies are impossible for all available MNPs, high-
throughput cellular-based assays are needed that pro-
vide critical and predictive data in just a few hours.
Shaw and colleagues26 provided examples where these
in vitro biologic activity profiles were correlated with in
vivo MNP effects. As current efforts to correlate in vitro
cellular activity with in vivo behavior (including toxicity)
improve, QNAR models such as those presented here
could help predict toxicity of newly designed nano-
materials and bias the design and manufacturing to-
ward safer products.

To demonstrate the validity of the QNAR modeling
approach, we have applied it in two case studies com-
prising two series of diverse MNPs. In case study 1, we
studied a data set of 51 MNPs that Shaw et al.26 tested
extensively against four cell lines in four different as-
says. Our studies revealed three clusters of MNPs based
on their induced biological activity and established spe-
cific nanostructure�activity relationships using chem-
informatics approaches relying on multiple molecular
descriptors of MNPs. We demonstrated the feasibility of
deriving robust QNAR models using the following four
experimental descriptors: size, relaxivities, and zeta po-
tential. We should note that in an attempt to capture
MNPs activity across a broader swath of biology, the
Shaw group measured the effects of nanomaterials in

four diverse cell lines, at four doses, and using four as-
says that interrogate different aspects of cellular physi-
ology. Thus, the biological effects of each nanomaterial
can be described as a 64-feature vector (4 cell lines �

4 assays � 4 doses). An analogy or inspiration for this
approach may be found in the field of cancer genom-
ics, where describing cancer cell lines using a common
multidimensional vector (in this case composed of the
expression levels of many different genes) has enabled
many powerful computational analyses.

Theoretically, one could develop 64 independent
QNAR models, with each model attempting to repro-
duce the biological response induced by 44 nanoparti-
cles for a given assay in a particular cell line at a given
dose. Actually, we have attempted to obtain such
highly specific models but with no success for most
cases (data not shown): despite pretty high fitting accu-
racy (�85%), the external predictivity (assessed by
5-fold external cross-validation) of these models were
dramatically low (ca. 40�50%), not significantly differ-
ent than the predictivity of models built with randomly
shuffled activity of the training set (i.e., using the stan-
dard Y-randomization test). Meanwhile, the combina-
tion of the entire 64 dimensional vector for each nano-
particle into one single averaged response apparently
helped with the detection of the overall biological sig-
nal from noise; this was achieved by defining two differ-
ent classes of particles (the threshold of averaged Z
score have been put to �0.4 to balance nanoparticle
distribution between the two classes). As we demon-
strate in the manuscript, this data transformation al-
lowed us to succeed in obtaining models character-
ized by both good internal fitness and external
predictive power.

In the course of additional studies, we are pursuing
different approaches for characterizing biological activ-
ity profiles, defining thresholds between profiles, and
reducing the number of biological dimensions by com-
pressing multiple measurements. For instance, we
could define profiles based on clusters resulting from
the previous analysis, or we could compare biological
activity profiles using different general profile similarity
metrics such as the Tanimoto coefficient, which is
widely used to compare chemical structures. We antici-
pate that the quest to identify and predict rigorous re-
lationships between MNP structures and their biological
activity will require empiric exploration of several differ-
ent approaches.

In case study 2, we investigated 109 MNPs with the
same core structure but diverse organic molecules at-
tached to their surfaces that were tested for cellular up-
take against different cell lines.30 The PaCa2 cell line
was selected for in-depth QSAR study because of the
significant variance of cellular uptakes among all tested
MNPs. Each individual MNP was represented by the
structure of the organic molecule attached to its sur-
face. Statistically robust kNN QSAR models, linking
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chemical descriptors and MNP cellular uptakes, were
developed and validated using 5-fold external valida-
tion procedure. Their external prediction power was
shown to be as high as R2 of 0.72. Additional investiga-
tions are in progress to map chemical features respon-
sible for differential uptake of MNPs onto chemical
structures of surface modifiers and to detect the key
structural fragments that mostly influence the cellular
uptake. Overall, models assessing the potential cellular
uptakes for particular cell lines are likely to be important
tools to design novel cell-targeting particles that de-
liver drugs to those specific cells. We aim to develop an
ensemble of models for use as efficient filters for
computer-aided MNP design.

The quality of all QNAR models derived in this study
was rigorously estimated according to their external
prediction abilities assessed by a 5-fold external cross-
validation procedure. Unlike many QSAR (or similar mul-
tidimensional data modeling) studies, we did not evalu-
ate the power of our models based on their “too
optimistic” fitting performances but on external predic-
tions only (models are built and selected using model-
ing set only, not the external set). Y-randomization tech-
nique also assessing the chance correlation likelihood
was used in both case studies to confirm the predictiv-
ity of generated models.

Before embarking on the huge task of predictive,
computational nanotoxicology, it is necessary to dem-
onstrate that statistical and data-mining techniques
could indeed uncover the nonspurious
nanostructure�activity correlations using experimen-
tal or computed properties of MNPs as structural de-
scriptors. Our preliminary analysis of these two data sets
provides a clear indication that this approach could in-
deed bear fruit. We also believe the two case studies re-

ported in this paper represent the first attempts to

build robust and validated QNAR models using either

MNPs as a whole (case study 1) or particle-specific or-

ganic compounds representing the whole structure

(case study 2). The two types of data sets studied in

this report are representative of many similar data sets

that hopefully will emerge in the published scientific lit-

erature and that could be subject to similar computa-

tional analysis. All too often the results of even large-

scale experimental projects remain confined to

individual laboratories or are published in unstruc-

tured format making it difficult, if not impossible, to ac-

cess these data. We hope that with time and more

data available in the public domain we will be able to

establish an Integrated Nanotoxicology Web-Portal to

enable the scientific community free access to both

data and computational models. As part of these ef-

forts, all data sets used in this study can be downloaded

from the ChemBench portal (http://chembench.m-

ml.unc.edu/) developed in our laboratory and are also

provided as Supporting Information in Tables S1 and

S2.

In summary, the trends in experimental nanotech-

nology and nanotoxicology require not only explora-

tion and rationalization of experimental

nanostructure�activity relationships, but most impor-

tantly, development of models that will help in design-

ing environmentally benign nanomaterials, and priori-

tizing existing and novel MNPs for in vivo testing.

Integrated data obtained from the characterization of

the MNPs and systematically acquired in vitro data

could enable the development of predictive QNAR

models to correlate descriptors of MNPs with clinically

important in vivo end points.

MATERIALS AND METHODS
Data Sets. Case Study 1: MNPs with Diverse Core Structures. Recently Shaw

et al.26 published a unique and comprehensive study in which
51 diverse MNPs were tested in various cell-based assays. Among
these MNPs, 23 were cross-linked iron oxide (CLIO) derivates; 19
were pseudocaged nanoparticle (PNP) based; 4 were monocrys-
talline iron oxide nanoparticle (MION) based; 3 were quantum
dot-based MNPs with a CdSe core, a ZnS shell, and a polymer
coating; and 2 other were iron-based MNPs: Feridex IV (approved
for in vivo imaging) and Ferrum Hausmann (approved for iron
supplementation). All these MNPs were tested in vitro against
four cell lines in four different assays at four different concentra-
tions resulting in a 51 * 64 data matrix of experimental results.
Each cell of this matrix (Supporting Information, Figure S1) re-
ports the biological activity profile induced by a given MNP at a
certain concentration in a particular assay for a given cell line.
The four cell lines included monocytes, hepatocytes, and two
types of vascular cells, namely, endothelial and smooth muscle.
The four assays measured (i) ATP content, (ii) reducing equiva-
lents, (iii) caspase-mediated apoptosis, and (iv) mitochondrial
membrane potential. Biological activity profiles were recorded
for the following concentrations of MNPs: 0.01, 0.03, 0.1, and 0.3
mg/mL for all iron-based MNPs; and 3, 10, 30, and 100 nM for
the three quantum dot-based MNPs. Assay response values were
expressed in units of standard deviations of the distribution ob-

tained when control cells were treated with PBS (phosphate buff-
ered saline) alone: ZNP � (�NP � �PBS)/�PBS, where �PBS is the
mean of control tests with PBS, and �PBS is their standard devia-
tion. The authors also reported four experimentally measured
descriptors for 44 out of 51 tested MNPs: size, relaxivities, and
zeta potential.

Case Study 2: MNPs with Common Core but Diverse Surface Modifiers. Weissle-
der et al.30 recently synthesized a library composed of 109 MNPs
in which a superparamagnetic nanoparticle (cross-linked iron ox-
ide with amine groups, CLIO-NH2) was decorated with different
synthetic small molecules. NPs were made magnetofluorescent
with the addition of FITC (fluorescein isothiocyanate) molecules
on their surfaces to enable measurement of cellular uptake.
Then, NPs were screened against different cell lines, including
PaCa2 human pancreatic cancer cells, U937 macrophage cell
lines, resting and activated primary human macrophages, and
HUVEC human umbilical vein endothelial cells. Unlike the other
cell lines, the uptake of the NPs in PaCa2 pancreatic cancer cells
was diverse and highly dependent on surface modification, en-
abling the application of QSAR modeling approach to this data.

QSAR Modeling. QSAR models establish quantitative relation-
ships between chemical structures characterized by chemical de-
scriptors and a target property, e.g., biological activity of chemi-
cals in specific biological assays. Validated and externally
predictive models29 can be applied to screen virtual chemical li-
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braries to retrieve compounds with desired properties.32,37,38

QSAR modeling employs complex machine learning algorithms
such as support vector machines (SVM) or the k nearest neigh-
bors (kNN) that take the descriptor matrix of compounds as in-
puts and output a predicted value for the modeled property.

The QSAR modeling workflow can be divided into three ma-
jor steps: (i) data preparation/analysis39 (selection of compounds
and descriptors), (ii) model building, and (iii) model validation/
selection (including the evaluation of its applicability domain,
AD). A set of compounds with known experimental activity is
randomly split into several training and test sets. Models are built
using compounds of each training set and then applied to test
set compounds to assess their properties. After application of rig-
orous tests (such as leave one out, n-fold cross-validation, and
Y-randomization) and calculation of model accuracy metrics de-
scribed below, certain models are selected if and only if they can
reasonably predict both the training set as assessed by cross-
validation procedures and the test set.40 Models obtained for the
modeling set with randomized activities (Y-randomization)
should have significantly lower predictive capabilities than mod-
els built using the modeling set with real activities. Finally, the se-
lected models are applied to the external validation set
compounds.

Chemical structures are represented by molecular descrip-
tors.41 In Case Study 2, we used the following two-dimensional
MOE descriptors (commercial software distributed by Chemical
Computing Group): physical properties, surface areas, atom and
bond counts, Kier & Hall connectivity indices, kappa shape indi-
ces, adjacency and distance matrix descriptors, pharmacophore
feature descriptors, and molecular charges.

The clustering of a chemical data set consists of merging
compounds into independent clusters that include chemically
similar molecules42 based on any similarity metrics (e.g., com-
pounds can be clustered based on their biological activity pro-
files). In this study, we have employed the ISIDA/Cluster pro-
gram31 implementing the sequential agglomerative hierarchical
nonoverlapping (SAHN) method. The parent�child relationships
between clusters result in a hierarchical data representation, or
dendrogram. In particular, we used ISIDA/Cluster to obtain the
heat map of the proximity matrix and the dynamic dendrogram
(Figure 2).

The kNN QSAR method43,44 is based on the idea that the ac-
tivity of a given compound can be predicted by averaging the
activities of k compounds from the modeling set, which are most
chemically similar to this compound. Briefly, our algorithm em-
ploys the kNN classification principle and variable selection pro-
cedure (simulated annealing with the Metropolis-like acceptance
criteria): it generates both an optimum k value, typically from
one to five, and an optimal nvar subset of descriptors that maxi-
mize the QSAR model’s training set accuracy as estimated by
the Qabs

2 statistical parameter. The Euclidean distance between
compounds is used as a metric that characterizes compounds’
dissimilarity in multidimensional descriptor space. Additional de-
tails of the method can be found elsewhere.29 For SVM classifica-
tion, we used the WinSVM program (version 1.1.8)37 developed
in our group at UNC, which implements the open-source libsvm
package (http://www.csie.ntu.edu.tw/�cjlin/libsvm/).

The applicability domain (AD) of a model is defined in order
to determine if a given model is capable of predicting the activ-
ity of a query compound29,38 within a reasonable error. In this
study, we defined the AD as a threshold distance DT between a
query compound and its nearest neighbors in the training set,
calculated as follows: DT � ȳ � Z� where ȳ is the average Euclid-
ean distance between each compound and its k nearest neigh-
bors in the training set, � is the standard deviation of the Euclid-
ean distances, and Z is an arbitrary parameter to control the
significance level; k is the parameter optimized in the course of
QSAR modeling. We set the default value of Z at 0.5, which for-
mally places the allowed distance threshold at the mean plus
one-half of the standard deviation. If the distance of the test
compound from any of its k nearest neighbors in the training
set exceeds the threshold, the prediction is considered unreli-
able. In this study, we used this same approach for both case
studies 1 and 2.

We used different statistical parameters to evaluate the per-
formance of models. For binary classification problems (like case
study 1), these are defined as: accuracy � (TP � TN)/(NA � NI);
sensitivity � TP/NA; specificity � TN/NI; CCR � 0.5 (sensitivity �
specificity), where NA is the total number of actives (or class 1),
NI is the total number of inactives (or class 0), TP is the number
of true positives (experimentally actives predicted as actives), TN
is the number of true negatives (experimentally inactives pre-
dicted as inactives), and CCR is the correct classification rate.

When activities were represented by a range of values (case
study 2), we used squared correlation coefficient (Rabs

2) for test
set compounds, squared leave-one-out cross-validation correla-
tion coefficient (Qabs

2) for training set compounds, and mean ab-
solute error (MAE) for the linear correlation between predicted
(Ypred) and experimental (Yexp) data. For this study, Y is the Paca2
cellular uptake. These parameters are defined as follows:

In case study 1, the classification models were considered ac-
ceptable if CCRCV � 0.6 and CCRtest � 0.6, whereas the regres-
sion models were considered acceptable in case study 2 if Qabs

2

	 0.6 and Rabs
2 	 0.6.
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